

■ 施工段階のひび割れ

橋 台

基本条件

・コンクリート: 24-8-40 BB C=281kg/m3

水セメント比52%

•打設温度 : 23℃

·外気温度 : 25°C~32°C(施工時)

・ひび割れが確認されるまでの平均外気温度 : 18℃

·打設量 : 110m3

•散水養生期間 :7日

•打設7月24日

脱枠時ひび割れ発見8月20日

施工

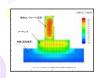
・打設 : コンクリートポンプ車、作業員10名

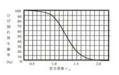
バイブレータΦ50-5台

打設中2時間に1回型枠へ散水

打設開始7:30 打設完了 15:00

ひび割れの推移


- ・統計的方法(小野の方法)による推定では、 最大ひび割れ幅は誘発目地を境に発生箇所 が1箇所の場合⇒0.32mm
- ・現地のひび割れ幅⇒0.35mm


現地ひび割れ幅は予測最大幅と適合していることより、今後の進展はないと考えられる。

小野の方法:マスコンクリートの温度ひび割れ特性 の数量化に関する検討

ひび割れ発生原因

- ① 規則性があり、フーチングよりほぼ垂直に発生
- ② 打設後1週~3週間が発生時期と推測される
- ③ 部材厚が1.60m、型枠設置期間に発生
- ④ ひび割れ指数による発生確率ほぼ100%

JCMAC2 Ver1.13 (日本コンクリート工学協会)

温度応力に起因したフーチングの外部拘束によるひび割れ

対策の所見

・ ひび割れの発生原因は外部拘束によるもので、 前項より進展がないと考えられる。 また、最大ひび割れ幅は0.35mmであり、一般的には 補修を必要とするひび割れ範囲から外れる。

しかし、長期的にみて弱点となる可能性が否定できない ため、水等劣化因子の浸入を防止する対策を早期に 講じた方が有効であると判断する。

『進行性でないひび割れについては、施工中または竣工後の早い時点にひび割れ補修を 行えば耐久性の低下の問題には対応可能と考えられる』

日本コンクリート工学協会:コンクリート診断技術 '06:P19

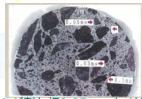
補修方法

- ① 本橋は景観配慮型の構造物である。 ⇒補修後の美観性を考慮
- ② ひび割れの幅は、0.35mm以下で変動は小さい。
- ③ 防水性・耐久性の向上を目的
- 4 ひび割れの原因、発生形態より貫通型であると 推測され、 部材厚が1.6mである。

注入工法一高圧注入 (無機系材料 超微粒子セメントスラリー)

①注入口削孔

湿式ドリル等により、切り屑が詰まらないよう注水しながらマーキング位置を削孔 (基本的な間隔は30㎝程度)


②プラグ設置・シーリング シール材(急結セメント)により、プラグ設置およびひび割れ箇所のシール また同時に、周辺の気泡、ジャンカ部、Pコン部のシール

ひび割れ注入

(超微粒子セメントスラリーの無機系注入材)

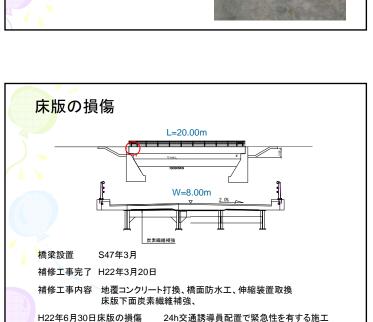
	(20°C)				
水	比	50%	60%	70%	備考
曲げ強度 N/mm² (kgf/cm²)		7.3 (74)	6.3 (64)	5.5 (56)	材船
引張強度 (kg	N/mm² f/cm²)	2.84 (29.0)	2.59 (26.4)	2.12 (21.6)	28日
付着強度 (kg	N/mm² f/cm²)	2.39 (24.4)	2.28 (23.2)	1.78 (18.1)	201
粘 度	ср	28	17	14	
フロー	秒	20.0	13.2	11.5	

ひび割れ幅0.05mmまで対

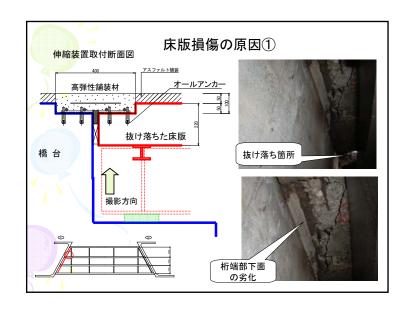
ハイスタッフス(日鐵セメント)

表-1 ひびわれ幅0.5mm未満								
項目	水比 (%)	水 (ℓ)	ハイスタッフ-Z (kg)	配合量 (ℓ)				
先行注入	200	4	2	4.7				
本注入	70	1.4	2	2.1				

③高圧注入


- ・(清水注入) ひび割れ内部の洗浄と注入するスラリーの躯体への吸水防止を目的に、 ひび割れ内部に清水を注入
- ・(先行注入) ひび割れ内部の不陸調整と極微細部への充填を目的に、 薄い配合のスラリーを注入
- ・(本注入) 先行注入に続いて、濃い配合のスラリーで本注入を行う

※注入後、上部注入プラグからのスラリー流出により、注入口間のひび割れに 充填されたことを確認する。



(抜け落ち)

